

Robert C. Patev
NAD Regional Technical Specialist - Navigation
(978) 318-8394

- Navigation structures are inherently subjected to impacts loads by transiting vessels
- Significant impacts are typically a result of operator error, loss of control, or loss of power
- Costs of navigation structures will significantly increase if we design based on these extreme events

Barge Impact Accidents

Barge Impact Accidents

Barge Impact Accidents

Tow Lashings

Tow Lashings

Fendering Systems

- Overall Goals of Fender Systems
 - Change Energy
 - Conversion of potential energy by gravitational force
 - Conversion of potential energy by buoyancy force
 - Conversion to potential energy by plastic deformation and rebound
 - Dissipation as heat energy by friction
 - Dissipation by permanent plastic deformation

Fendering Systems

- Energy Modes for Fenders
 - Compression
 - Compression/bending
 - Shear
 - Compression/shear
 - Torsion
 - Bending

Fendering Systems

Overview: Types of Systems

- <u>Timber</u> simplest biggest problem is wear
- Solid Rubber compression of rubber material, absorbs high energy - low reaction force
- Pneumatic compression of air/oil, moderate energy - low reaction force
- <u>Foam-filled</u> compression of resilient foam, high energy absorption - low reaction force
- Mechanical springs or hydraulic shock absorbers, stiff and high reaction forces
- Hybrid mix of systems above

Foam-Filled/Pneumatic

Solid Rubber/Extruded

Fender Reaction/Energy Curves

1 Pce: AN1000x1000(E2)

Full-Scale Barge Impact Experiments

Full-Scale Barge Impact Experiments

- Background on Experiments
 - 32,000 short tons
 - 15 barge tow
 - Velocities from 0.8 to 2.8 ft/s
 - Angles from 7 to 24 degrees
 - 14 experiments on "prototype" fendering system

- Shows high potential for reduction of impact forces
 - Significant force reduction
 - Capability to be fabricated into new structures
 - Low cost alternative
 - Potential applications:
 - Bullnoses
 - Protection cells
 - Upper guide/guard walls
 - Maintenance costs (?)

Panama Canal Third Lane Impact Forces

(revised March 2003)

Vessel Type (displacement)	Load Case \	Velocity	Impact Angle	<u>Deflection</u>	<u>Deflection</u>	<u>Deformation</u>	<u>Force</u>
	(r	normal)		of Fenders	<u>of Wall</u>	of Hull	(normal to wall)
	((m/sec)	(deg)	(m)	(m)	(m)	(kN)

METSO MV1400x1000 Fenders on Two 8-ft Drilled Shafts

ACP Container (Deadweight 110,000 metric tons)

Usual
Unusual
Extreme

0.064	7	0.11	0.11	0	1079.7
0.18	10	0.9	0.22	0	5050.73
0.4	15	0.9	1.54	0.04	18078.08

ACP Bulker (Deadweight 130,000 metric tons)

Usual
Unusual
Extreme

0.064	7	0.07	0.07	0	719.8
0.18	10	0.83	0.29	0	2879.32
0.4	15	0.9	1.43	0.04	17041.8

Marmet Lock

Project Issues

- Cofferdam nearing closure and exposed to barge traffic
- Contract fendering system not in place -Contractor rescheduled fenders to June 04
- Currently protected by Corps helper boat

Navigations Restrictions

- Downbound traffic in land chamber
- Tow Length Restrictions
- Delay costs to navigation customer

Alternatives

- Navigation Restrictions
- Continue Helper Boat
- Alternate Fendering System
- Restrict Closure of cofferdam/Installation of Needles

Concept Design of Donut Fenders

Layout of Donut Fenders

- Advantages
 - Quick manufacturing and delivery times
 - Lead time 2-3 weeks
 - Manufactured in Winchester, VA (300 miles away from site)
 - Quick installation times
 - 1-2 weeks depending upon foundation conditions
 - Low to no friction surface
 - Allows tows to slide along
 - Durable and wear resistance
 - Floats with lower pool elevations
 - Bearings allow fenders to move both vertically as well as rotate freely around the pile upon impact

Advantages

- Proper design can meets design impact forces
 - Requires changes to standard dimensions but is very possible with the right donut and pile
- Fit limited space requirements
 - Donut designs can meet riverward space of about 3 feet to meet tow alignment (larger on arcs)
 - Donut designs can meet draft requirements of 4 feet below water and 2 feet above
 - Space 3 inches from large cells to permit both sides of donut to absorb energy
- Removable easy process
- Reusable for other projects

- Advantages (cont')
 - Slightly lower cost
 - Need to compare risks and costs for decision
 - Costs of with monthly helper boat, bid cost of fendering system, contractors time frame, removable and reusable system, etc....

Disadvantages

- Towing industry may have concerns
 - Not continuous landing surface
 - Fenders for cofferdam are to protect cells not provide guide walls for tows
 - Non-traditional looks
 - Donuts (or upper portions) can be colored to stand out for safety reasons
 - Keep approach/exit speeds down

Conclusions

<u>Issues</u>

- Absorb energy to prevent "breakup" of tow
 - Is technology available i.e., feasible concept
 - Sacrificial Vs. "No damage" approach
 - Tradeoffs
- Understand behavior during:
 - Fluctuation of pool levels
 - Overtopping from flood events
 - Drift and ice
- Modifications to existing bullnose structures
- Impacts to normal traffic
 - Slow down/speed up approach times

Conclusions

<u>Issues</u>

- Maintenance
 - Wear and tear issues
 - Life cycle costs
- Methods of installation/removal
- Removal/replacement after an impact event
- Benefit-cost analysis
 - Need costs for recent accidents on Ohio River
 - Need costs (construction/maintenance) for various systems

Conclusions

- Fendering Workshop
 - Participants
 - Engineers
 - Operations
 - Industry
 - Learn Design Methods
 - Focus Needs for Navigation
- Field Demonstration Project
 - Cost sharing through CRADA/Industry
 - Monitoring instrumentation